S.31, 17.

a) Zwei Seiten müssen parallel sein, also die Seitenvektoren kollinear. Dies ist nur bei \overrightarrow{AB} und \overrightarrow{DC} möglich: $\overrightarrow{AB} = 2 \cdot \overrightarrow{DC}$ also a = -1

b)
$$\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB} = \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix} + \begin{pmatrix} 4 \\ 6 \\ -2 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \\ -1 \end{pmatrix}$$
; B(3|4|-1)
$$\overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{AD} = \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix} + \begin{pmatrix} -2 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} -3 \\ 0 \\ 2 \end{pmatrix}$$
; D(-3|0|2)
$$\overrightarrow{OC} = \overrightarrow{OD} + \overrightarrow{DC} = \begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 3 \\ 1 \end{pmatrix}$$
; C(-1|3|1)

S. 31, 18.
a)
$$\overrightarrow{b} = \overrightarrow{v} + \overrightarrow{w} = \begin{pmatrix} 150 \\ -100 \end{pmatrix} + \begin{pmatrix} -100 \\ -50 \end{pmatrix} = \begin{pmatrix} 50 \\ -150 \end{pmatrix}$$

b) $|\overrightarrow{b}| = \sqrt{50^2 + 150^2} = \sqrt{25000} \approx 158,1$

Die Fähre fährt mit 158,1 m/min = 9,486 km/h. c) Wie oft muss man \vec{b} zu \vec{OA} addieren, um \vec{OB} zu

erhalten? $\overrightarrow{OB} = \overrightarrow{OA} + n \cdot \overrightarrow{b} \Leftrightarrow \begin{pmatrix} 100 \\ -100 \end{pmatrix} = \begin{pmatrix} -100 \\ 500 \end{pmatrix} + n \cdot \begin{pmatrix} 50 \\ -150 \end{pmatrix}$

OB = OA + $n \cdot b \Leftrightarrow \binom{100}{-100} = \binom{100}{500} + n \cdot \binom{150}{-150}$ Man erhält n = 4. also erreicht die Fähre nach

Lösungen zu Kapitel 2: Geraden und Ebenen

Ihr Fundament (S. 34/35)

4 Minuten den Punkt B.

S. 34, 1.
a)
$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \begin{pmatrix} 6-3\\7-2\\9-1 \end{pmatrix} = \begin{pmatrix} 3\\5\\8 \end{pmatrix}$$

b) $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \begin{pmatrix} 7-2\\6-1\\8-1 \end{pmatrix} = \begin{pmatrix} 5\\5\\7 \end{pmatrix}$
c) $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \begin{pmatrix} 7-(-2)\\8-(-4)\\5-(-2) \end{pmatrix} = \begin{pmatrix} 9\\12\\7 \end{pmatrix}$

S. 34, 2. a)
$$d(A; B) = 5$$
 b) $d(A; B) = \sqrt{10}$ c) $d(A; B) = \sqrt{77}$

5.34, 3.
a)
$$\begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix} + \begin{pmatrix} -5 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} -2 \\ 2 \\ 1 \end{pmatrix}$$

b) $\frac{1}{4} \cdot \begin{pmatrix} 4 \\ -16 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ -4 \\ 0 \end{pmatrix}$
c) $(-7) \cdot \begin{pmatrix} -11 \\ -3 \\ 5 \end{pmatrix} + (-7) \cdot \begin{pmatrix} 9 \\ 3 \\ -4 \end{pmatrix} = \begin{pmatrix} 14 \\ 0 \\ -7 \end{pmatrix}$

S. 34, 4.
a)
$$\overrightarrow{v}$$
 und \overrightarrow{w} sind kollinear, $\begin{pmatrix} 2 \\ 4 \\ 5 \end{pmatrix} \cdot 2 = \begin{pmatrix} 4 \\ 8 \\ 10 \end{pmatrix}$

b) \vec{v} und \vec{w} sind nicht kollinear.

c)
$$\vec{v}$$
 und \vec{w} sind kollinear, $\begin{pmatrix} 3 \\ 2 \\ 4 \end{pmatrix} \cdot (-3) = \begin{pmatrix} -9 \\ -6 \\ -12 \end{pmatrix}$

S. 34, 5.

a) A(2|0|0); B(2|5|0); C(0|5|0); D(0|0|0) E(2|0|2); F(2|5|2); G(0|5|2); H(0|0|2)

b)
$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \begin{pmatrix} 2-2\\5-0\\0-0 \end{pmatrix} = \begin{pmatrix} 0\\5\\0 \end{pmatrix}$$

$$\overrightarrow{FG} = \overrightarrow{OG} - \overrightarrow{OF} = \begin{pmatrix} 0-2\\5-5\\0 \end{pmatrix} = \begin{pmatrix} -2\\0\\0 \end{pmatrix}$$

c)
$$\overrightarrow{EF} = \overrightarrow{OF} - \overrightarrow{OE} = \begin{pmatrix} 2-2\\5-0\\2-2 \end{pmatrix} = \begin{pmatrix} 0\\5\\0 \end{pmatrix}$$

AB und EF sind kollinear (Faktor 1), somit verlaufen die zugehörigen Kanten parallel zueinander.

S. 34, 6.
a)
$$\begin{pmatrix} 5 \\ -6 \\ 0 \end{pmatrix} = 2 \cdot \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} - \frac{1}{2} \cdot \begin{pmatrix} -6 \\ 4 \\ 8 \end{pmatrix}$$

 \vec{v} ist eine Linearkombination von \vec{a} und \vec{b} . b) \vec{v} ist keine Linearkombination von \vec{a} und \vec{b} .

5.34, 7.

a)
$$\begin{pmatrix} -2 \\ 6 \\ 10 \end{pmatrix}$$

b) $\begin{pmatrix} 10,5 \\ 7 \\ 0 \end{pmatrix}$

c) $\begin{pmatrix} -2 \\ 6 \\ -4 \end{pmatrix}$

d) $\begin{pmatrix} 9 \\ -16 \\ 12 \end{pmatrix}$

e) $\begin{pmatrix} -\frac{1}{2} \\ \frac{3}{2} \\ \frac{1}{5} \end{pmatrix}$

f) $\begin{pmatrix} 0 \\ \frac{11}{4} \\ 1 \end{pmatrix}$

S. 34, 8.
a)
$$\overrightarrow{AB} = \begin{pmatrix} 2 \\ 6 \\ -2 \end{pmatrix}$$
 $\overrightarrow{BC} = \begin{pmatrix} -6 \\ -1 \\ 1 \end{pmatrix}$ $\overrightarrow{AC} = \begin{pmatrix} -4 \\ 5 \\ -1 \end{pmatrix}$

b)
$$|\overrightarrow{AB}| = \begin{vmatrix} 2 \\ 6 \\ -2 \end{vmatrix} = \sqrt{2^2 + 6^2 + 2^2} = \sqrt{44} \approx 6.6$$

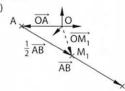
$$\left| \overrightarrow{BC} \right| = \left| \begin{pmatrix} -6 \\ -1 \\ 1 \end{pmatrix} \right| = \sqrt{6^2 + 1^2 + 1^2} = \sqrt{38} \approx 6.2$$

$$|\overrightarrow{AC}| = \begin{vmatrix} -4 \\ 5 \\ -1 \end{vmatrix} = \sqrt{4^2 + 5^2 + 1^2} = \sqrt{42} \approx 6.5$$

c)
$$\overrightarrow{EF} = \begin{pmatrix} -6 \\ -1 \\ 1 \end{pmatrix} = \overrightarrow{BC}$$

d)
$$\overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{AD} = \overrightarrow{OA} + \overrightarrow{BE} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ -2 \\ 6 \end{pmatrix} = \begin{pmatrix} 2 \\ -3 \\ 7 \end{pmatrix}$$

S. 34, 9.



b)
$$\overrightarrow{OM_1} = \overrightarrow{OA} + \frac{1}{2}\overrightarrow{AB} = \overrightarrow{OA} + \frac{1}{2}(-\overrightarrow{OA} + \overrightarrow{OB})$$

$$= \overrightarrow{OA} - \frac{1}{2}\overrightarrow{OA} + \frac{1}{2}\overrightarrow{OB} = \frac{1}{2}\overrightarrow{OA} + \frac{1}{2}\overrightarrow{OB} = \frac{1}{2}(\overrightarrow{OA} + \overrightarrow{OB})$$

c)
$$\overrightarrow{OM_1} = \frac{1}{2} (\overrightarrow{OA} + \overrightarrow{OB}) = \frac{1}{2} \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} + \begin{pmatrix} 4 \\ 5 \\ -1 \end{bmatrix} = \begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix}$$

$$\overrightarrow{OM_2} = \frac{1}{2} \begin{bmatrix} -2 \\ 4 \\ 0 \end{bmatrix} + \begin{pmatrix} -2 \\ 2 \\ 0 \end{bmatrix} = \begin{pmatrix} -2 \\ 3 \\ 3 \end{pmatrix}$$

d)
$$\overrightarrow{AF} = \begin{pmatrix} -4 \\ 3 \\ 5 \end{pmatrix}$$
, $\overrightarrow{M_1M_2} = \begin{pmatrix} -5 \\ 1 \\ 3 \end{pmatrix}$

Prüfen, ob \overrightarrow{AF} kollinear ist zu $\overrightarrow{M_1M_2}$:

$$r \cdot \begin{pmatrix} -4 \\ 3 \\ 5 \end{pmatrix} = \begin{pmatrix} -5 \\ 1 \\ 3 \end{pmatrix} \Rightarrow \begin{cases} -4r = -5 & r = \frac{5}{4} \\ 3r = 1 & r = \frac{1}{3} \\ 5r = 3 & r = \frac{3}{5} \end{cases}$$

 \overline{AF} ist nicht parallel zu $\overline{M_1M_2}$

S. 35, 10.

$$\vec{v} = \vec{s} + \vec{W} = \begin{pmatrix} -20 \\ 30 \end{pmatrix} + \begin{pmatrix} 50 \\ 40 \end{pmatrix} = \begin{pmatrix} 30 \\ 70 \end{pmatrix}$$
Geschwindigkeit in m/min: $v = |\vec{v}| = \sqrt{5300} \approx 72.8$

$$72.8 \frac{m}{min} \approx 4368.7 \frac{m}{h} \approx 4.4 \frac{km}{h}$$

a)
$$\overrightarrow{AB} = \begin{pmatrix} -7 \\ 6 \\ 3 \end{pmatrix}$$
, $\overrightarrow{BC} = \begin{pmatrix} 9 \\ -2 \\ 3 \end{pmatrix}$, $\overrightarrow{CA} = \begin{pmatrix} -2 \\ -4 \\ -6 \end{pmatrix}$

Da $|\overrightarrow{AB}| = |\overrightarrow{BC}| = \sqrt{94}$, ist ABC gleichschenklig,

Das Dreieck ist nicht gleichseitig, wegen $|\overrightarrow{CA}| = 2\sqrt{14} \neq |\overrightarrow{AB}| = |\overrightarrow{BC}|$

b) Nach a) ist die Seite \overline{CA} die Basis des Dreiecks. Seitenmittelpunkt: S(-1|-2|-3)

Höhe:
$$h_B = |\overrightarrow{SB}| = \begin{vmatrix} -4 \\ 4 \\ 6 \end{vmatrix} = 2\sqrt{17}$$

Flächeninhalt: $A = h_B \cdot \frac{1}{2} |\overrightarrow{CA}| = 2\sqrt{238} \approx 30,85$

S. 35, 12.

- \bigcirc {(s|t|0); s \in \mathbb{R} ; t \in \mathbb{R} }, x_1x_2 -Ebene
- \bigcirc {(0|0|t); t \in \mathbb{R} }, y-Achse
- ③ $\{(s|3|t); s \in \mathbb{R}; t \in \mathbb{R}\}$, Ebene parallel zur x_1x_3 -Ebene durch (0|3|0)
- ④ {(s|s|t); s ∈ \mathbb{R} ; t ∈ \mathbb{R} }, Ebene, die die x_3 -Achse und g: $\vec{x} = r \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ enthält

S. 35, 13.

a) Gleichsetzungsverfahren

$$\begin{vmatrix} y = -2x + 19 \\ y = x - 2 \end{vmatrix} \Leftrightarrow \begin{vmatrix} -2x + 19 = x - 2 \\ y = x - 2 \end{vmatrix}$$

$$\Leftrightarrow \begin{vmatrix} 21 = 3x \\ y = x - 2 \end{vmatrix} \Leftrightarrow \begin{vmatrix} x = 7 \\ y = 5 \end{vmatrix}$$

b) Einsetzungsverfahren

$$\begin{vmatrix} y = 3x - 7 \\ 4x + 2y = 16 \end{vmatrix} \Leftrightarrow \begin{vmatrix} y = 3x - 7 \\ 4x + 2(3x - 7) = 16 \end{vmatrix}$$
$$\Leftrightarrow \begin{vmatrix} y = 3x - 7 \\ x = 3 \end{vmatrix} \Leftrightarrow \begin{vmatrix} y = 2 \\ x = 3 \end{vmatrix}$$

c) Additionsverfahren

$$\begin{vmatrix} 2x + 5y = 2 \\ 6x - 2y = 40 \end{vmatrix} \cdot (-3) \Leftrightarrow \begin{vmatrix} 2x + 5y = 2 \\ -17y = 34 \end{vmatrix}$$
$$\Leftrightarrow \begin{vmatrix} 2x - 10 = 2 \\ y = -2 \end{vmatrix} \Leftrightarrow \begin{vmatrix} x = 6 \\ y = -2 \end{vmatrix}$$

d) Additionsverfahren

$$\begin{vmatrix} 2x + 5y = 16 \\ 5x + 7y = 18 \end{vmatrix} \cdot (-5) \Leftrightarrow \begin{vmatrix} 2x + 5y = 16 \\ -11y = -44 \end{vmatrix}$$
$$\Rightarrow \begin{vmatrix} 2x + 20 = 16 \\ \Rightarrow \end{vmatrix} \Rightarrow \begin{vmatrix} x = -2 \end{vmatrix}$$

S.35, 14.

c)
$$\frac{1}{2}x + \frac{3}{4}y = 5 | \cdot 4 = + d$$
) $27x - 2y = 1 = \frac{-12x + y = 0}{-2x + y = 12}$
 $-2x + y = 12$
 $-4y = 32$
 $-2x + 8 = 12$
 $-2x + 8 = 12$
 $-4x + y = 0$
 $-4x$

e)
$$4x -2y = 3 | \cdot (-2) |$$

 $8x -4y = 4 < -2y = 3$
 $0 = -2$
 $L = \{ \}$

f)
$$-3x - 2y = -6 \mid \cdot 5$$

$$\frac{5x + 3y = 8}{3x + 2y = 6} \mid \cdot 3 \iff +$$

$$\frac{-y = -6}{3x + 2y = 6}$$

$$\frac{y = 6}{3x + 12 = 6}$$

$$\frac{y = 6}{x = -2}$$

$$y = 6$$

g)
$$\frac{1}{2}x - \frac{3}{4}y = -6 \mid \cdot (-4) \leqslant +\frac{1}{3}x - \frac{1}{2}y = -4 \mid \cdot 6$$

$$-2x + 3y = 24$$

$$2x - 3y = -24$$

$$2x - 3y = -24$$

$$0 = 0$$

$$L = \{(-12 + 1,5y|y)\}$$

S. 35, 15.

- a) genau eine Lösung (x = 2; y = -4)
- b) unendlich viele Lösungen
- c) keine Lösung

a)
$$a = -1$$
; $b \ne 10$

b)
$$a = -5$$
; $b = 6$

c)
$$a = -1$$
; $b = 10$

5.35, 17.

a) Zahlenpaar einsetzen:

$$f(-6) = m \cdot (-6) + 1 = 4$$

$$-6m + 1 = 4;$$
 $m = -\frac{1}{2};$ $f(x) = -\frac{1}{2}x + 1$

b) Da f und g parallel verlaufen, haben sie dieselbe Steigung: $g(x) = -\frac{1}{2}x + n$ Punkt P einsetzen:

$$g(1) = -\frac{1}{2} \cdot 1 + n = 1,5$$

 $-\frac{1}{2} + n = 1,5;$ $n = 2;$ $g(x) = -\frac{1}{2}x + 2$

5.35, 18.

Der Schwerpunkt des Dreiecks ist der Schnittpunkt der drei Seitenhalbierenden. Setzt man den Bleistift an diesem Punkt an, kann man das Dreieck balancieren.

Oberflächeninhalt:

$$O = a^2 + 2 \cdot a \cdot \sqrt{h^2 + a^2} = 25 + 10 \cdot \sqrt{50} \approx 95,7 \text{ cm}^2$$

Volumen:

$$V = \frac{1}{3} \cdot h \cdot a^2 = \frac{1}{3} \cdot 5 \cdot 5^2 = \frac{1}{3} \cdot 125 \approx 41,67 \text{ cm}^3$$

Prüfen Sie Ihr neues Fundament (S. 94/95)

S. 94, 1.

$$x_2 = -\frac{1}{2} + \frac{3}{2}x_3$$

$$x_1 - 1 + 3x_3 + 3x_3 = 1 \Leftrightarrow x_1 = 2 - 6x_3$$

$$L = \left\{ \left(2 - 6t | -\frac{1}{2} + \frac{3}{2}t | t\right) \right\}$$

5.94, 2.

a) Lösen des Gleichungssystems

$$\begin{vmatrix} 40M_1 + 30M_2 + 26M_3 = 39 \\ 60M_1 + 20M_2 + 4M_3 = 56 \\ 50M_2 + 70M_3 = 5 \end{vmatrix}$$

liefert $L = \{(0.9 + 0.4t | 0.1 - 1.4t | t)\}.$

Damit erhält man die benötigten Mengen M₁ und M₂ in Abhängigkeit von der Menge t von M₃.

b) Auf M_3 verzichten: t = 0, dann $x_1 = 0.9$, $x_2 = 0.1$ ist möglich.

Auf M₂ verzichten: 0,1 - 1,4t = 0 \Leftrightarrow t = $\frac{1}{14}$ = x₃ > 0. Für x₁ gilt dann: x₁ = $\frac{9}{10}$ + $\frac{4}{10}$ · $\frac{1}{14}$ = $\frac{13}{14}$

Wegen $0 \le x_1, x_3 \le 1$ kann auch auf M_2 verzichtet werden.

S. 94, 3.

a) z.B.
$$A(3|2|1)$$
 (für $r = 1$) und $B(2|1|1)$ (für $r = 0$)

b)
$$\begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2+r \\ 1+r \\ 1 \end{pmatrix} \quad \begin{array}{c} 0=2+r \\ -1=1+r \\ r=-2 \\ 1=1 \end{array}$$

Der Punkt P liegt auf h

$$\begin{pmatrix} 3 \\ 3 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2+r \\ 1+r \\ 1 \end{pmatrix} \text{ führt zu } r = 1 \text{ und}$$

r = 2 und -1 = 1 (Widerspruch in 3. Gleichung) Der Punkt Q liegt nicht auf h.

- c) $x_3 = 0$, also 1 = 0: die Gerade h hat keinen Schnittpunkt mit der x_1x_2 -Ebene (keinen Spurpunkt S_{12}). $x_2 = 0$, also 1 + r = 0; r = -1: $S_{13}(1|0|1)$ $x_1 = 0$, also 2 + r = 0; r = -2: $S_{23}(0|-1|1)$
- d) Da für den Richtungsvektor $x_3 = 0$ gilt, verläuft die Gerade parallel zur x_1x_2 -Ebene.

S. 94, 4.
a)
$$\vec{x} = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 5 \\ 3 \\ 5 \end{pmatrix}$$
 mit $r \in \mathbb{R}$ und $0 \le r \le 1$

b)
$$|\overline{AB}| = \begin{vmatrix} 5 \\ 3 \\ 5 \end{vmatrix} = \sqrt{5^2 + 3^2 + 5^2} = \sqrt{59} \approx 7,68$$

c)
$$\overrightarrow{OM} = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} + 0.5 \cdot \begin{pmatrix} 5 \\ 3 \\ 5 \end{pmatrix} = \begin{pmatrix} 0.5 \\ 2.5 \\ 2.5 \end{pmatrix}, M\left(\frac{1}{2} \middle| \frac{5}{2} \middle| \frac{5}{2} \right)$$