$$LGS: \begin{pmatrix} 1 & 1 & 1 & 1 & | & 0 \\ 1 & 1 & -1 & 1 & | & 0 \\ 0 & 2 & 3 & 4 & | & 2 \\ 0 & -2 & 3 & -4 & | & -2 \end{pmatrix} \rightarrow \begin{pmatrix} e & c & b & a \\ 1 & 1 & 1 & 1 & | & 0 \\ 0 & 0 & 2 & 0 & | & 0 \\ 0 & 0 & 3 & 4 & | & 2 \\ 0 & 0 & 6 & 0 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} e & c & b & a \\ 1 & 1 & 1 & 1 & | & 0 \\ 0 & 2 & 3 & 4 & | & 2 \\ 0 & 0 & 1 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{pmatrix}$$

Lösung: a ist frei wählbar; b = 0; c = 1 - 2a; e = a - 1

$$f_a(x) = ax^4 + (1 - 2a)x^2 + (a - 1)$$

Es muss noch geprüft werden, ob alle Funktionen dieser Schar auf der y-Achse einen Extrempunkt haben.

$$f_a'(x) = 4ax^3 + (2-4a)x \qquad \quad f_a''(x) = 12ax^2 + (2-4a)$$

Für a
$$\neq \frac{1}{2}$$
 ist $f'_a(0) = 0$ und $f''_a(0) = (2 - 4a) \neq 0$ erfüllt.

Für $a = \frac{1}{2}$ ist $f_{0,5}(x) = \frac{1}{2}x^4 - \frac{1}{2}$ eine nach unten verschobene Potenzfunktion mit geradem Exponenten und hat deshalb bei x = 0 ein Minimum.

Seite 43 | Aufgabe 35

a)
$$f_1(x) = ax^3 + bx^2 + cx + d$$

$$f_1'(x) = 3ax^2 + 2bx + c$$

$$f_1(1) = 0 \implies a + b + c + d = 0$$

$$f_1(3) = 2 \implies 27a + 9b + 3c + d = 2$$

$$f_1'(1) = 7.4 \Rightarrow 3a + 2b + c = 7.4$$

$$f_1'(3) = -1 \Rightarrow 27a + 6b + c = -1$$

$$LGS: \begin{pmatrix} a & b & c & d \\ 1 & 1 & 1 & 1 & 0 \\ 27 & 9 & 3 & 1 & 2 \\ 3 & 2 & 1 & 0 & 7,4 \\ 27 & 6 & 1 & 0 & -1 \end{pmatrix}$$

Lösung:
$$a = 1.1$$
; $b = -8.7$; $c = 21.5$; $d = -13.9$
 $f_1(x) = 1.1x^3 - 8.7x^2 + 21.5x - 13.9$

b) $f_2'(x) = (2 - x)e^{3-x}$

$$f_2(1) = 0$$
; $f_2(3) = (3-1)e^0 = 2$; $f_2'(1) = (2-1)e^{3-1} = e^2 \approx 7,389 \approx 7,4$; $f_2'(3) = (2-3)e^0 = -1$

Damit erfüllt der Graph von f2 alle Bedingungen.

c) $f_1(2) = 3.1$ und $f_2(2) = e \approx 2.7$; Wegen $f_2(2) < f_1(2)$ gehört der untere, rote Graph zu f_2 . Bemerkung: Der Graph von f_2 scheint besser zu verlaufen, die Kurve ist weniger eng. Tatsächlich geht dieser Graph in Q auch ruckfrei in die Gerade über: $f_2''(x) = (x - 3)e^{3-x}$ und $f_2''(3) = 0$, was der Krümmung der Geraden entspricht.

2.2 Parametergleichung einer Geraden

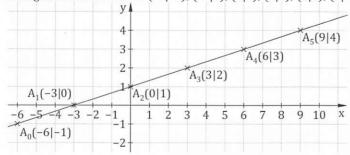
Seite 44 | Einstieg X2 A-1(10|8) 7 6 5 A(6|5) 4 $A_{0.5}(4|3,5)$ 3 2 $A_1(2|2)$ 3 9 10 X₁ 5 6 $A_2(-2|-1)$

Seite 45 | Aufgabe 1

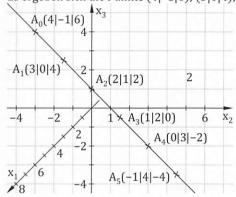
- a) Beispiele: $A_0(-6|-1)$; $A_1(-3|-3)$; $A_2(0|-5)$; $A_3(3|-7)$
- b) Beispiele: $B_0(0|2|-3)$; $B_1(2|1|0)$; $B_2(4|0|3)$; $B_3(6|-1|6)$

Seite 45 | Aufgabe 2

a) Es ergeben sich die Punkte (-6|-1); (-3|0); (0|1); (3|2); (6|3); (9|4).



b) Es ergeben sich die Punkte (4|-1|6); (3|0|4); (2|1|2); (1|2|0); (0|3|-2); (-1|4|-4).



Als Stützvektor kann jeder beliebige Punkt auf der Geraden g gewählt werden. Der Richtungsvektor muss ein Vielfaches vom angegebenen Richtungsvektor sein. Beispiel: $\vec{x} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} -1 \\ 2 \end{pmatrix}$

Da die Parametergleichung einer Geraden nicht eindeutig bestimmt ist, gibt es keine eindeutige Lösung. Beispielsweise kann \overrightarrow{OA} als Stützvektor und \overrightarrow{AB} als Richtungsvektor verwendet werden:

a) g:
$$\vec{x} = \begin{pmatrix} 3 \\ -4 \end{pmatrix} + r \cdot \begin{pmatrix} -9 \\ 12 \\ -3 \end{pmatrix}$$

b)
$$g: \vec{x} = \begin{pmatrix} 8 \\ -1 \\ 1 \end{pmatrix} + r \cdot \begin{pmatrix} -12 \\ -2 \\ 4 \end{pmatrix}$$
 c) $g: \vec{x} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} + r \cdot \begin{pmatrix} -2 \\ -1 \\ -3 \end{pmatrix}$ d) $g: \vec{x} = \begin{pmatrix} 0 \\ 2 \\ 5 \end{pmatrix} + r \cdot \begin{pmatrix} 0 \\ 0 \\ -6 \end{pmatrix}$

c)
$$g: \vec{x} = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} + r \cdot \begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix}$$

d)
$$g: \vec{x} = \begin{pmatrix} 0 \\ 2 \\ 5 \end{pmatrix} + r \cdot \begin{pmatrix} 0 \\ 0 \\ -6 \end{pmatrix}$$

a) Paufg, Qnicht aufg

b) P nicht auf g, Q auf g c) P und Q liegen auf g. d) P nicht auf g, Q auf g

Seite 46 | Aufgabe 6

a)
$$r = 0$$

b)
$$r = 1$$

c)
$$0 \le r \le 1$$
 d) $r = \frac{1}{2}$ e) $r > 1$

d)
$$r = \frac{1}{2}$$

Seite 46 | Aufgabe 7

a) Die Strecke AB beschreibt alle Punkte, die sich zwischen Punkt A und Punkt B befinden, sowie die Punkte A und B selbst. Eine Parametergleichung der Geraden AB beschreibt darüber hinaus alle Punkte, die von B aus gesehen hinter A und die von A aus gesehen hinter B liegen. Die beiden Gleichungen unterscheiden sich nur durch die Bedingung für den Parameter r: Liegt er zwischen 0 und 1 ($0 \le r \le 1$), so liegt der Punkt auf der Strecke.

b)
$$\vec{x} = \begin{pmatrix} -5 \\ -8 \\ 11 \end{pmatrix} + r \cdot \begin{pmatrix} 12 \\ 8 \\ -4 \end{pmatrix}$$
 mit $0 \le r \le 1$

c) Beispiele: r = 0.25 ergibt $C_1(-2|-6|10)$; r = 0.5 ergibt $C_2(1|-4|9)$; r = 0.75 ergibt $C_3(4|-2|8)$.

a)
$$\vec{x} = \begin{pmatrix} -2 \\ 1 \\ 7 \end{pmatrix} + r \cdot \begin{pmatrix} 3 \\ -9 \\ 6 \end{pmatrix}$$
 mit $0 \le r \le 1$

b) A liegt auf der Geraden, aber nicht auf der Strecke PQ. B liegt auf der Strecke PQ. C liegt auf der Geraden, aber nicht auf der Strecke PQ. D liegt nicht auf der Geraden.

Seite 46 | Aufgabe 9

a)
$$g: \vec{x} = \begin{pmatrix} 0 \\ 3 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

c)
$$\overline{BC}$$
: $\vec{x} = \begin{pmatrix} 5 \\ 0 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 0 \\ 3 \\ 0 \end{pmatrix}$ mit $0 \le r \le 1$

b) h:
$$\vec{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 5 \\ 3 \\ 0 \end{pmatrix}$$

b)
$$h: \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 5 \\ 3 \\ 0 \end{pmatrix}$$

d) $\overline{BE}: \vec{x} = \begin{pmatrix} 5 \\ 0 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} -2 \\ 2 \\ 2 \end{pmatrix} \text{ mit } 0 \le r \le 1$

Seite 46 | Aufgabe 10
a)
$$g: \vec{x} = \begin{pmatrix} 10 \\ -12 \\ 1.8 \end{pmatrix} + t \cdot \begin{pmatrix} -3 \\ 5 \\ 0.1 \end{pmatrix} \text{ mit } 0 \le t \le 20$$

b) Der Luftballon befindet sich in der Flugbahn (t = 7).

Seite 46 | Aufgabe 11

a) $\overrightarrow{OM_a} = \frac{1}{2} (\overrightarrow{OB} + \overrightarrow{OC}) = \begin{pmatrix} -1 \\ 7 \\ 1 \end{pmatrix}$; Seitenhalbierende durch M_a : $\vec{x} = \vec{a} + r \cdot (\overrightarrow{OM_a} - \vec{a}) = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} + r \cdot \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\overrightarrow{OM_b} = \frac{1}{2} (\overrightarrow{OA} + \overrightarrow{OC}) = \begin{pmatrix} -3 \\ \frac{3}{3} \end{pmatrix}$; Seitenhalbierende durch M_b : $\overrightarrow{x} = \begin{pmatrix} 3 \\ 8 \\ -3 \end{pmatrix} + r \cdot \begin{pmatrix} -6 \\ -5 \\ -5 \end{pmatrix}$ $\overrightarrow{OM_c} = \frac{1}{2}(\overrightarrow{OA} + \overrightarrow{OB}) = \begin{pmatrix} 1\\4 \end{pmatrix}$; Seitenhalbierende durch M_c : $\overrightarrow{x} = \begin{pmatrix} -5\\6 \end{pmatrix} + r \cdot \begin{pmatrix} 6\\-2 \end{pmatrix}$

b)
$$M_b M_c$$
: $\vec{x} = \begin{pmatrix} 3 \\ 8 \\ -3 \end{pmatrix} + r \cdot \begin{pmatrix} 4 \\ 1 \\ -4 \end{pmatrix}$; $M_a M_b$: $\vec{x} = \begin{pmatrix} -1 \\ 7 \\ 1 \end{pmatrix} + r \cdot \begin{pmatrix} -2 \\ -4 \\ 2 \end{pmatrix}$; $M_c M_a$: $\vec{x} = \begin{pmatrix} 1 \\ 4 \\ -1 \end{pmatrix} + r \cdot \begin{pmatrix} -2 \\ 3 \\ 2 \end{pmatrix}$

c) Beispiel für r = 0.5: P(0|5,5|0)

a) $S_{12}(2|3|0)$, $S_{13}(1|0|1)$, $S_{23}(0|-3|2)$

b)
$$g: \vec{x} = \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} -1 \\ -3 \\ 1 \end{pmatrix}$$

c) Es gilt:
$$x_1 = 0$$
, also $2 - r = 0 \Leftrightarrow r = 2$: $\overrightarrow{OS_{23}} = \binom{2}{0} + 2 \cdot \binom{-1}{-3} = \binom{0}{-3}$; $S_{23}(0|-3|2)$

Seite 47 | Aufgabe 13

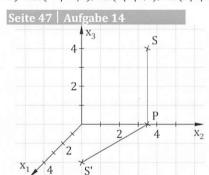
 $S_{12}(3|2|0), S_{13}(1|0|4), S_{23}(0|-1|6)$

 $S_{12}(3|-2|0), S_{13}(2|0|1), S_{23}(0|4|3)$

 $S_{12}(-1|-2|0), S_{13}(0|0|1,5), S_{23}(0|0|1,5)$

b) $S_{12}(-1|1,5|0)$, $S_{13}(2|0|3)$, $S_{23}(0|1|1)$

d) $S_{12}(-4|-4|0)$, $S_{13}(-2|0|3)$, $S_{23}(0|4|6)$



$$\begin{split} g \colon & \vec{x} = \begin{pmatrix} -2 \\ 2,5 \end{pmatrix} + r \begin{pmatrix} 2 \\ -0,5 \\ -1 \end{pmatrix} \\ & \text{Beim Schattenpunkt S' gilt:} \\ & x_3 = 0 \Leftrightarrow r = 3 \Leftrightarrow \overrightarrow{OS'} = \begin{pmatrix} 4 \\ 1 \\ 0 \end{pmatrix}, \text{ also S'}(4|1|0) \end{split}$$

Seite 48 | Aufgab

a) g_{AB} : $\vec{x} = \begin{pmatrix} -2 \\ \frac{1}{2} \end{pmatrix} + r \begin{pmatrix} -1 \\ 4 \\ 2 \end{pmatrix}$; $\vec{x} = \begin{pmatrix} 1 \\ -11 \\ 13 \end{pmatrix}$ mit r = -3. Die drei Punkte liegen auf einer Geraden.

b) $g_{AB}: \vec{x} = \begin{pmatrix} 14 \\ 0 \end{pmatrix} + r \begin{pmatrix} -16 \\ 3 \\ 6 \end{pmatrix}; \vec{x} \neq \begin{pmatrix} -10 \\ 1.5 \\ 1 \end{pmatrix}$, wird für kein r erfüllt. Die drei Punkte liegen nicht auf einer Geraden.

Mia hat mit ihrer Behauptung recht, denn $\vec{x} = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix} + r_1 \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}$ und $\vec{x} = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix} + r_2 \begin{pmatrix} 0 \\ 2 \\ -4 \end{pmatrix}$ beschreiben dieselbe Gerade: Der Stützpunkt

ist beide Male gleich und die Richtungsvektoren sind kollinear, zeigen also in die gleiche Richtung. Mit $r_1 = 2 \cdot r_2$ ergibt sich die gleiche Gleichung. Moritz Vermutung ist falsch, denn sein gewählter Stützvektor liegt nicht auf g.

Seite 48 | Aufgabe 17

a) g schneidet die x1-Achse und verläuft parallel zur x2x3-Ebene.

b) g schneidet die x₃-Achse und verläuft in der x₂x₃-Ebene, parallel zur x₂-Achse.

g verläuft durch den Ursprung und diagonal durch den ersten Quadranten.

d) g ist gleich der x3-Achse

g verläuft durch den Ursprung in der x1x3-Ebene.

g schneidet die x₂-Achse und verläuft in der x₂x₃-Ebene.

Seite 48 | Aufgabe 18

a)
$$g: \vec{x} = \begin{pmatrix} 2 \\ -2 \\ 3 \end{pmatrix} + r \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

b) h:
$$\vec{x} = r \binom{2}{5}$$

c)
$$k: \vec{x} = \begin{pmatrix} -2 \\ 7 \end{pmatrix} + r \begin{pmatrix} 2 \\ 5 \\ 3 \end{pmatrix}$$

d)
$$l: \vec{x} = r \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

e) m:
$$\vec{x} = r \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

b) h:
$$\vec{x} = r \begin{pmatrix} 2 \\ 5 \\ 3 \end{pmatrix}$$
 c) k: $\vec{x} = \begin{pmatrix} -2 \\ 7 \\ -1 \end{pmatrix} + r \begin{pmatrix} 2 \\ 5 \\ 3 \end{pmatrix}$ d) l: $\vec{x} = r \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$
f) n: $\vec{x} = \begin{pmatrix} 0 \\ 0 \\ -2 \end{pmatrix} + r \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ g) z.B. p: $\vec{x} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + r \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$

g) z.B. p:
$$\vec{x} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + r \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

a) $S_{12}(-3|-2|0)$, $S_{13}(-3|0|1)$, h: $\vec{x} = \begin{pmatrix} -3 \\ -2 \\ 0 \end{pmatrix} + r \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$

b) Die Gerade h liegt parallel zur x2x3-Ebene, weswegen sie diese nicht schneidet und es keinen Spurpunkt S23 gibt.

 g_1 : $S_{12} = S_{13} = S_{23}(0|0|0)$: ein Spurpunkt im Ursprung g_2 : $S_{12} = S_{13}(3|0|0)$, $S_{23}(0|8|1)$: zwei Spurpunkte g_3 : $S_{12} = S_{13}(4|0|0)$: ein Spurpunkt g_4 : $S_{12}(2|1|0)$, ein Spurpunkt

d) g₁ verläuft durch den Ursprung, alle drei Spurpunkte fallen dort zusammen. g_2 schneidet die x_1 -Achse im Punkt (3|0|0) und dadurch sowohl die x_1x_2 -Ebene, als auch die x_1x_3 -Ebene in diesem Punkt. Der dritte Spurpunkt existiert.

g3 schneidet ebenfalls eine Koordinatenachse (x1), der dritte Spurpunkt existiert aber nicht, da die Gerade parallel zur x2x3-Ebene verläuft.

g4 verläuft parallel zur x3-Achse und dadurch auch zur x2x3-Ebene und zur x1x3-Achse. Sie hat nur einen Spurpunkt.

e) 🔃 Die Gerade schneidet eine der drei Koordinatenachsen und hat mit der durch die beiden anderen Koordinatenachsen aufgespannten Ebene einen Spurpunkt außerhalb der Achsen.

② Die Gerade ist parallel zu einer Koordinatenebene, aber zu keiner Achse parallel.

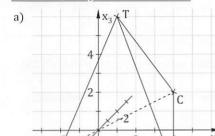
Seite 49 | Aufgabe 20

a)
$$\overrightarrow{OC} = \overrightarrow{OS} + 2\overrightarrow{SM}$$
, also $C(-4|6|0)$

$$g_{SB}$$
: $\vec{x} = \begin{pmatrix} -2 \\ 3 \\ 6 \end{pmatrix} + r \begin{pmatrix} 5 \\ -6 \end{pmatrix}$; g_{SC} : $\vec{x} = \begin{pmatrix} -2 \\ 3 \\ 6 \end{pmatrix} + r \begin{pmatrix} -2 \\ 3 \\ -6 \end{pmatrix}$; g_{CB} : $\vec{x} = \begin{pmatrix} -4 \\ 6 \\ 0 \end{pmatrix} + r \begin{pmatrix} 4 \\ 2 \\ 0 \end{pmatrix}$

b) $\overrightarrow{OD} = \overrightarrow{BC}$; g_{BD} : $\overrightarrow{x} = \begin{pmatrix} 0 \\ 8 \\ 0 \end{pmatrix} + r \begin{pmatrix} -4 \\ -10 \\ 0 \end{pmatrix} = \overrightarrow{OF}$ für $r = \frac{1}{2}$; g_{FS} : $\overrightarrow{x} = \begin{pmatrix} -2 \\ 3 \\ 0 \end{pmatrix} + r \begin{pmatrix} 0 \\ 6 \\ 6 \end{pmatrix}$; Der Richtungsvektor $\overrightarrow{v} = \begin{pmatrix} 0 \\ 0 \\ 6 \end{pmatrix}$ zeigt, dass die Gerade durch die Punkte F und S parallel zur x₃-Achse verläuft und F somit senkrecht unter S liegt.

Seite 49 Aufgabe 21



gac:
$$\vec{x} = \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} + r \begin{pmatrix} -4 \\ 4 \\ 1 \end{pmatrix}$$
; $\vec{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ ist für kein r erfüllt.

gac ist damit keine Ursprungsgerade.

Die Ursprungsgerade, die in der Zeichnung mit gac zusammenfällt, hat die Gleichung

gursprungsgerade:
$$\vec{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + r \begin{pmatrix} -4 \\ 4 \\ 1 \end{pmatrix}$$

- b) $g_{AB}: \vec{x} = \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix} + r \begin{pmatrix} 0 \\ 6 \\ -1 \end{pmatrix}$, auf g_{AB} liegen zum Beispiel die Punkte R(2|11|-2) und Q(2|-7|1).
- c) $\binom{2}{0} + r \binom{0}{6} = \binom{2}{2} = \frac{1}{2}$ für $r = \frac{1}{2}$. P ist der Mittelpunkt der Strecke \overline{AB} .

d)
$$g_C: \vec{x} = \begin{pmatrix} -2 \\ 3 \\ 1 \end{pmatrix} + r \begin{pmatrix} 4 \\ -1 \\ -1.5 \end{pmatrix}; \vec{CS} = \frac{2}{3} \cdot \begin{pmatrix} 4 \\ -\frac{1}{3} \\ -\frac{2}{3} \end{pmatrix} = \begin{pmatrix} \frac{8}{3} \\ -\frac{2}{3} \\ -\frac{2}{3} \end{pmatrix}; \vec{OS} = \vec{OC} + \vec{CS} = \begin{pmatrix} -2 \\ 3 \\ 1 \end{pmatrix} + \frac{2}{3} \begin{pmatrix} 4 \\ -1 \\ -1.5 \end{pmatrix} = \begin{pmatrix} \frac{2}{3} \\ \frac{7}{3} \\ 0 \end{pmatrix} \Rightarrow S \begin{pmatrix} \frac{2}{3} & \frac{7}{3} & \frac{10}{3} \\ \frac{7}{3} & \frac{10}{3} & \frac{10}{3} \end{pmatrix}$$

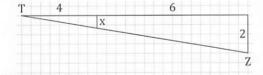
 $g_{TS}: \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 6 \end{pmatrix} + r \begin{pmatrix} \frac{2}{3} \\ \frac{4}{3} \\ -6 \end{pmatrix}; \ \vec{x} = \begin{pmatrix} 2 \\ 5 \\ -12 \end{pmatrix} \text{für } r = 3. \ \text{Die Punkte T, S und Q liegen damit auf einer Geraden.}$

Seite 49 | Aufgabe 22

a) Wenn man den Koordinatenursprung an der vorderen linken Ecke wählt, gilt für die Punkte T und Z: T(2|2|1,5), T(4|12|3). Gerade durch T und Z: T(2|2|1,5), T(4|12|3). Für Punkte A bis D gilt T(2|2|1,5) Für Punkte A bis D gilt T(3|2,5) Für Punkte A bis D gilt T(3|3,5) Für Punkte A

 $\binom{2}{2}_{1.5} + 0.4 \binom{2}{10}_{1.5} = \binom{2.8}{6}_{2.1}$. Dies entspricht den Koordinaten von Punkt D, der also als Bohrpunkt gewählt werden sollte.

b) Blick von "oben" unter Betrachtung der x_2 -Koordinaten; $\frac{x}{2} = \frac{4}{10} \Leftrightarrow x = 2.8$ x entspricht hier der x_1 -Koordinate des gesuchten Punktes, somit kommt nur Punkt D infrage.



Seite 49 | Aufgabe 23

a) L(-1|-2|4); F(2|0|2); G(2|3|2); H(0|3|2)

$$g_{FL}$$
: $\vec{x} = \begin{pmatrix} -1 \\ -2 \\ 4 \end{pmatrix} + r \begin{pmatrix} 3 \\ 2 \\ -2 \end{pmatrix}$

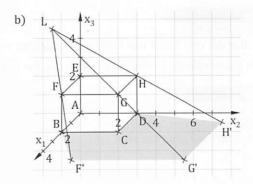
Aus $x_3 = 0$ folgt r = 2 und damit $F_s(5|2|0)$.

$$g_{GL}$$
: $\vec{x} = \begin{pmatrix} -1 \\ -2 \end{pmatrix} + r \begin{pmatrix} 3 \\ 5 \\ -2 \end{pmatrix}$

Aus $x_3 = 0$ folgt r = 2 und damit $G_S(5|8|0)$.

$$g_{HL}$$
: $\vec{x} = \begin{pmatrix} -1 \\ -2 \end{pmatrix} + r \begin{pmatrix} 1 \\ 5 \\ -2 \end{pmatrix}$

Aus $x_3 = 0$ folgt r = 2 und damit $H_s(1|8|0)$.



Seite 49 Aufgabe 24

a) $\vec{x} = \overrightarrow{OA} + r \cdot \overrightarrow{AC} = \begin{pmatrix} -7 \\ 3 \\ -8 \end{pmatrix} + r \begin{pmatrix} 6 \\ 3 \\ 15 \end{pmatrix}$, für $r = \frac{2}{3}$ ergibt sich (-3|5|2), also B.

Der Punkt B liegt zwischen den beiden anderen Punkten.

b) In der Mitte liegt der Punkt, dessen erste Koordinate zwischen den ersten Koordinaten der beiden anderen Punkte liegt.